"""Contains context related classes. A context provides data during the
execution of a :class:`pybroker.strategy.Strategy`."""
"""Copyright (C) 2023 Edward West. All rights reserved.
This code is licensed under Apache 2.0 with Commons Clause license
(see LICENSE for details).
"""
import numpy as np
import pandas as pd
from pybroker.common import (
BarData,
DataCol,
ModelSymbol,
PriceType,
StopType,
to_datetime,
to_decimal,
)
from pybroker.config import StrategyConfig
from pybroker.model import TrainedModel
from pybroker.portfolio import Entry, Order, Portfolio, Position, Stop, Trade
from pybroker.scope import (
ColumnScope,
IndicatorScope,
ModelInputScope,
PendingOrder,
PendingOrderScope,
PredictionScope,
StaticScope,
)
from collections import deque
from dataclasses import dataclass, field
from datetime import datetime
from decimal import Decimal
from numpy.typing import NDArray
from typing import (
Any,
Callable,
Iterator,
Literal,
Mapping,
MutableMapping,
NamedTuple,
Optional,
Union,
)
[文档]
class BaseContext:
"""Base context class.
Attributes:
config: :class:`pybroker.config.StrategyConfig`.
"""
def __init__(
self,
config: StrategyConfig,
portfolio: Portfolio,
col_scope: ColumnScope,
ind_scope: IndicatorScope,
input_scope: ModelInputScope,
pred_scope: PredictionScope,
pending_order_scope: PendingOrderScope,
models: Mapping[ModelSymbol, TrainedModel],
sym_end_index: Mapping[str, int],
):
self.config = config
self._portfolio = portfolio
self._col_scope = col_scope
self._ind_scope = ind_scope
self._input_scope = input_scope
self._pred_scope = pred_scope
self._models = models
self._sym_end_index = sym_end_index
self._pending_order_scope = pending_order_scope
@property
def total_equity(self) -> Decimal:
"""Total equity currently held in the
:class:`pybroker.portfolio.Portfolio`.
"""
return self._portfolio.equity
@property
def cash(self) -> Decimal:
"""Total cash currently held in the
:class:`pybroker.portfolio.Portfolio`.
"""
return self._portfolio.cash
@property
def total_margin(self) -> Decimal:
"""Total amount of margin currently held in the
:class:`pybroker.portfolio.Portfolio`.
"""
return self._portfolio.margin
@property
def total_market_value(self) -> Decimal:
"""Total market value currently held in the
:class:`pybroker.portfolio.Portfolio`. The market value is defined as
the amount of equity held in cash and long positions added together
with the unrealized PnL of all open short positions.
"""
return self._portfolio.market_value
@property
def win_rate(self) -> Decimal:
"""Running win rate of trades."""
return self._portfolio.win_rate
@property
def loss_rate(self) -> Decimal:
"""Running loss rate of trades."""
return self._portfolio.loss_rate
[文档]
def orders(self) -> Iterator[Order]:
r""":class:`Iterator` of all :class:`pybroker.portfolio.Order`\ s that
have been placed and filled.
"""
for order in self._portfolio.orders:
yield order
[文档]
def pending_orders(
self, symbol: Optional[str] = None
) -> Iterator[PendingOrder]:
for order in self._pending_order_scope.orders(symbol):
yield order
[文档]
def trades(self) -> Iterator[Trade]:
r""":class:`Iterator` of all :class:`pybroker.portfolio.Trade`\ s that
have been completed.
"""
for trade in self._portfolio.trades:
yield trade
[文档]
def pos(
self,
symbol: str,
pos_type: Literal["long", "short"],
) -> Optional[Position]:
r"""Retrieves a current long or short
:class:`pybroker.portfolio.Position` for a ``symbol``.
Args:
symbol: Ticker symbol of the position to return.
pos_type: Specifies whether to return a ``long`` or ``short``
position.
Returns:
:class:`pybroker.portfolio.Position` if one exists, otherwise
``None``.
"""
self._verify_pos_type(pos_type)
if pos_type == "long" and symbol in self._portfolio.long_positions:
return self._portfolio.long_positions[symbol]
elif pos_type == "short" and symbol in self._portfolio.short_positions:
return self._portfolio.short_positions[symbol]
return None
[文档]
def positions(
self,
symbol: Optional[str] = None,
pos_type: Optional[Literal["long", "short"]] = None,
) -> Iterator[Position]:
r"""Retrieves all current positions.
Args:
symbol: Ticker symbol used to filter positions. If ``None``,
positions for all symbols are returned. Defaults to ``None``.
pos_type: Type of positions to return. If ``None``, both ``long``
and ``short`` positions are returned.
Returns:
:class:`Iterator` of currently held
:class:`pybroker.portfolio.Position` \s.
"""
if pos_type is not None:
self._verify_pos_type(pos_type)
if symbol is None:
if pos_type != "short":
for pos in self._portfolio.long_positions.values():
yield pos
if pos_type != "long":
for pos in self._portfolio.short_positions.values():
yield pos
else:
if (
pos_type != "short"
and symbol in self._portfolio.long_positions
):
yield self._portfolio.long_positions[symbol]
if (
pos_type != "long"
and symbol in self._portfolio.short_positions
):
yield self._portfolio.short_positions[symbol]
[文档]
def long_positions(
self, symbol: Optional[str] = None
) -> Iterator[Position]:
r"""Retrieves all current long positions.
Args:
symbol: Ticker symbol used to filter positions. If ``None``,
long positions for all symbols are returned. Defaults to
``None``.
Returns:
:class:`Iterator` of currently held long
:class:`pybroker.portfolio.Position` \s.
"""
return self.positions(symbol, "long")
[文档]
def short_positions(
self, symbol: Optional[str] = None
) -> Iterator[Position]:
r"""Retrieves all current short positions.
Args:
symbol: Ticker symbol used to filter positions. If ``None``,
short positions for all symbols are returned. Defaults to
``None``.
Returns:
:class:`Iterator` of currently held short
:class:`pybroker.portfolio.Position` \s.
"""
return self.positions(symbol, "short")
def _verify_pos_type(self, pos_type: str):
if pos_type != "short" and pos_type != "long":
raise ValueError(f"Unknown pos_type: {pos_type!r}.")
[文档]
def calc_target_shares(
self, target_size: float, price: float, cash: Optional[float] = None
) -> Union[Decimal, int]:
r"""Calculates the number of shares given a ``target_size`` allocation
and share ``price``.
Args:
target_size: Proportion of cash used to calculate the number of
shares, where the max ``target_size`` is ``1``. For example, a
``target_size`` of ``0.1`` would represent 10% of cash.
price: Share price used to calculate the number of shares.
cash: Cash used to calculate the number of shares. If
``None``, then the :class:`pybroker.portfolio.Portfolio` equity
is used to calculate the number of shares.
Returns:
Number of shares given ``target_size`` and share ``price``. If
:attr:`pybroker.config.StrategyConfig.enable_fractional_shares` is
``True``, then a Decimal is returned.
"""
shares = (
(to_decimal(cash) if cash is not None else self._portfolio.equity)
* to_decimal(target_size)
/ to_decimal(price)
)
if self.config.enable_fractional_shares:
return shares.max(0)
return max(int(shares), 0)
[文档]
def model(self, name: str, symbol: str) -> Any:
r"""Returns a trained model.
Args:
name: Name used to identify the model that was registered with
:meth:`pybroker.model.model`.
symbol: Ticker symbol of the data that was used to train the model.
Returns:
Instance of the trained model.
"""
model_sym = ModelSymbol(name, symbol)
if model_sym not in self._models:
raise ValueError(f"Model {name!r} not found for {symbol}.")
return self._models[model_sym].instance
[文档]
def indicator(self, name: str, symbol: str) -> NDArray[np.float64]:
r"""Returns indicator data.
Args:
name: Name used to identify the indicator that was registered with
:meth:`pybroker.indicator.indicator`.
symbol: Ticker symbol that was used to generate the indicator data.
Returns:
:class:`numpy.ndarray` of indicator data for all bars up to the
current one, sorted in ascending chronological order.
"""
end_index = self._sym_end_index[symbol]
return self._ind_scope.fetch(symbol, name, end_index)
[文档]
def input(self, model_name: str, symbol: str) -> pd.DataFrame:
r"""Returns model input data for making predictions.
Args:
model_name: Name of the model for the input data.
symbol: Ticker symbol of the model for the input data.
Returns:
:class:`pandas.DataFrame` containing the input data, where each row
represents a bar in the sequence up to the current bar. The rows
are sorted in ascending chronological order.
"""
end_index = self._sym_end_index[symbol]
return self._input_scope.fetch(symbol, model_name, end_index)
[文档]
def preds(self, model_name: str, symbol: str) -> NDArray:
r"""Returns model predictions.
Args:
model_name: Name of the model that made the predictions.
symbol: Ticker symbol of the model that made the predictions.
Returns:
:class:`numpy.ndarray` containing the sequence of model predictions
up to the current bar. Sorted in ascending chronological order.
"""
end_index = self._sym_end_index[symbol]
return self._pred_scope.fetch(symbol, model_name, end_index)
[文档]
@dataclass
class ExecResult:
r"""Holds data that was set during the execution of a
:class:`pybroker.strategy.Strategy`.
Attributes:
symbol: Ticker symbol that was used for the execution.
date: Timestamp of the bar that was used for the execution.
buy_fill_price: Fill price to use for a buy (long) order of ``symbol``.
sell_fill_price: Fill price to use for a sell (short) order of
``symbol``.
score: Score used to rank ``symbol`` when ranking long and short
signals. Orders are placed for symbols with the highest scores,
where the number of positions held at any time in the
:class:`pybroker.portfolio.Portfolio` is specified by
:attr:`pybroker.config.StrategyConfig.max_long_positions` and
:attr:`pybroker.config.StrategyConfig.max_short_positions`
respectively. Buy and sell signals are ranked separately by
``score``.
hold_bars: Number of bars to hold a long or short position for, after
which the position is automatically liquidated.
buy_shares: Number of shares to buy of ``symbol``.
buy_limit_price: Limit price used for a buy (long) order of ``symbol``.
sell_shares: Number of shares to sell of ``symbol``.
sell_limit_price: Limit price used for a sell (short) order of
``symbol``.
long_stops: Stops for long :class:`pybroker.portfolio.Entry`\ s.
short_stops: Stops for short :class:`pybroker.portfolio.Entry`\ s.
cover: Whether ``buy_shares`` are used to cover a short position. If
``True``, the resulting buy order will be placed before sell
orders.
pending_order_id: ID of :class:`pybroker.scope.PendingOrder` that was
created.
"""
symbol: str
date: np.datetime64
buy_fill_price: Union[
int,
float,
np.floating,
Decimal,
PriceType,
Callable[[str, BarData], Union[int, float, Decimal]],
]
sell_fill_price: Union[
int,
float,
np.floating,
Decimal,
PriceType,
Callable[[str, BarData], Union[int, float, Decimal]],
]
score: Optional[float]
hold_bars: Optional[int]
buy_shares: Optional[Decimal]
buy_limit_price: Optional[Decimal]
sell_shares: Optional[Decimal]
sell_limit_price: Optional[Decimal]
long_stops: Optional[frozenset[Stop]]
short_stops: Optional[frozenset[Stop]]
cover: bool = field(default=False)
pending_order_id: Optional[int] = field(default=None)
[文档]
class ExecSignal(NamedTuple):
"""Holds data of a buy/sell signal.
Attributes:
id: Unique ID.
symbol: Ticker symbol.
shares: Number of shares that was set by the
:class:`pybroker.strategy.Strategy` execution.
score: Score that was set by the
:class:`pybroker.strategy.Strategy` execution.
bar_data: :class:`pybroker.common.BarData` for ``symbol``.
type: ``buy`` or ``sell`` signal type.
"""
id: int
symbol: str
shares: Union[int, float, Decimal]
score: Optional[float]
bar_data: BarData
type: Literal["buy", "sell"]
[文档]
class PosSizeContext(BaseContext):
r"""Holds data for a position size handler set with
:meth:`pybroker.Strategy.set_pos_size_handler`. Used to set position sizes
when placing orders from buy and sell signals.
Attributes:
sessions: ``dict`` used to store custom data for all symbols.
"""
def __init__(
self,
config: StrategyConfig,
portfolio: Portfolio,
col_scope: ColumnScope,
ind_scope: IndicatorScope,
input_scope: ModelInputScope,
pred_scope: PredictionScope,
pending_order_scope: PendingOrderScope,
models: Mapping[ModelSymbol, TrainedModel],
sessions: Mapping[str, Mapping],
sym_end_index: Mapping[str, int],
):
super().__init__(
config=config,
portfolio=portfolio,
col_scope=col_scope,
ind_scope=ind_scope,
input_scope=input_scope,
pred_scope=pred_scope,
pending_order_scope=pending_order_scope,
models=models,
sym_end_index=sym_end_index,
)
self.sessions = sessions
self._signal_shares: dict[int, Union[int, float, Decimal]] = {}
self._buy_results: Optional[list[ExecResult]] = None
self._sell_results: Optional[list[ExecResult]] = None
self._max_long_positions = config.max_long_positions
self._max_short_positions = config.max_short_positions
[文档]
def signals(
self, signal_type: Optional[Literal["buy", "sell"]] = None
) -> Iterator[ExecSignal]:
r"""Returns :class:`Iterator` of :class:`.ExecSignal`\ s containing
data for buy and sell signals.
"""
if signal_type is not None:
if signal_type != "buy" and signal_type != "sell":
raise ValueError(f"Unknown signal_type: {signal_type!r}.")
if (
signal_type is None or signal_type == "buy"
) and self._buy_results is not None:
for i, result in enumerate(self._buy_results):
if result.buy_shares is None:
raise ValueError("buy_shares is None on a buy ExecResult.")
yield ExecSignal(
id=i,
symbol=result.symbol,
shares=result.buy_shares,
score=result.score,
bar_data=self._col_scope.bar_data_from_data_columns(
result.symbol, self._sym_end_index[result.symbol]
),
type="buy",
)
if (
self._max_long_positions is not None
and i + 1 == self._max_long_positions
):
break
if (
signal_type is None or signal_type == "sell"
) and self._sell_results is not None:
id_offset = (
len(self._buy_results) if self._buy_results is not None else 0
)
for i, result in enumerate(self._sell_results):
if result.sell_shares is None:
raise ValueError(
"sell_shares is None on a sell ExecResult."
)
yield ExecSignal(
id=i + id_offset,
symbol=result.symbol,
shares=result.sell_shares,
score=result.score,
bar_data=self._col_scope.bar_data_from_data_columns(
result.symbol, self._sym_end_index[result.symbol]
),
type="sell",
)
if (
self._max_short_positions is not None
and i + 1 == self._max_short_positions
):
break
[文档]
def set_shares(
self, signal: ExecSignal, shares: Union[int, float, Decimal]
):
"""Sets the number of shares of an order for the buy or sell signal."""
self._signal_shares[signal.id] = shares
[文档]
def set_pos_size_ctx_data(
ctx: PosSizeContext,
buy_results: Optional[list[ExecResult]],
sell_results: Optional[list[ExecResult]],
):
r"""Sets data on a :class:`.PosSizeContext` instance.
Args:
ctx: :class:`.PosSizeContext`.
buy_results: :class:`.ExecResult`\ s of buy signals.
sell_results: :class:`.ExecResult`\ s of sell signals.
"""
ctx._signal_shares.clear()
ctx._buy_results = buy_results
ctx._sell_results = sell_results
[文档]
class ExecContext(BaseContext):
r"""Contains context data during the execution of a
:class:`pybroker.strategy.Strategy`. Includes data about the current bar,
portfolio positions, and other relevant context. This class is also used to
set buy and sell signals for placing orders.
The data contained in this class is for the latest bar that has already
completed. Placing an order will be executed on a future bar specified by
:attr:`pybroker.config.StrategyConfig.buy_delay` and
:attr:`pybroker.config.StrategyConfig.sell_delay`.
Attributes:
symbol: Current ticker symbol of the execution.
buy_fill_price: Fill price to use for a buy (long) order of
``symbol``.
buy_shares: Number of shares to buy of ``symbol``.
buy_limit_price: Limit price to use for a buy (long) order of
``symbol``.
sell_fill_price: Fill price to use for a sell (short) order of
``symbol``.
sell_shares: Number of shares to sell of ``symbol``.
sell_limit_price: Limit price to use for a sell (short) order of
``symbol``.
hold_bars: Number of bars to hold a long or short position for, after
which the position is automatically liquidated.
score: Score used to rank ``symbol`` when ranking buy and sell signals.
Orders are placed for symbols with the highest scores, where the
number of positions held at any time in the
:class:`pybroker.portfolio.Portfolio` is specified by
:attr:`pybroker.config.StrategyConfig.max_long_positions` and
:attr:`pybroker.config.StrategyConfig.max_short_positions`
respectively. Long and short signals are ranked separately by
``score``.
session: ``dict`` used to store custom data that persists for each
bar during the :class:`pybroker.strategy.Strategy`\ 's execution.
stop_loss: Sets stop loss on a new :class:`pybroker.portfolio.Entry`,
where value is measured in points from entry price.
stop_loss_pct: Sets stop loss on a new
:class:`pybroker.portfolio.Entry`, where value is measured in
percentage from entry price.
stop_loss_limit: Limit price to use for the stop loss.
stop_loss_exit_price: Exit :class:`pybroker.common.PriceType` to use
for the stop loss exit. If set, the stop is checked against the
``exit_price`` and exits at the ``exit_price`` when triggered.
stop_profit: Sets profit stop on a new
:class:`pybroker.portfolio.Entry`, where value is measured in
points from entry price.
stop_profit_pct: Sets profit stop on a new
:class:`pybroker.portfolio.Entry`, where value is measured in
percentage from entry price.
stop_profit_limit: Limit price to use for the profit stop.
stop_profit_exit_price: Exit :class:`pybroker.common.PriceType` to use
for the profit stop exit. If set, the stop is checked against the
``exit_price`` and exits at the ``exit_price`` when triggered.
stop_trailing: Sets a trailing stop loss on a new
:class:`pybroker.portfolio.Entry`, where value is measured in
points from entry price.
stop_trailing_pct: Sets a trailing stop loss on a new
:class:`pybroker.portfolio.Entry`, where value is measured in
percentage from entry price.
stop_trailing_limit: Limit price to use for the trailing stop loss.
stop_trailing_exit_price: Exit :class:`pybroker.common.PriceType` to
use for the trailing stop exit. If set, the stop is checked against
the ``exit_price`` and exits at the ``exit_price`` when triggered.
"""
_stop_id: int = 0
def __init__(
self,
symbol: str,
config: StrategyConfig,
portfolio: Portfolio,
col_scope: ColumnScope,
ind_scope: IndicatorScope,
input_scope: ModelInputScope,
pred_scope: PredictionScope,
pending_order_scope: PendingOrderScope,
models: Mapping[ModelSymbol, TrainedModel],
sym_end_index: Mapping[str, int],
session: MutableMapping,
):
super().__init__(
config=config,
portfolio=portfolio,
col_scope=col_scope,
ind_scope=ind_scope,
input_scope=input_scope,
pred_scope=pred_scope,
pending_order_scope=pending_order_scope,
models=models,
sym_end_index=sym_end_index,
)
self._scope = StaticScope.instance()
self._curr_date: Optional[np.datetime64] = None
self._dt: Optional[datetime] = None
self._foreign: dict[str, pd.DataFrame] = {}
self.symbol: str = symbol
self.buy_fill_price: Optional[
Union[
int,
float,
np.floating,
Decimal,
PriceType,
Callable[[str, BarData], Union[int, float, Decimal]],
]
] = None
self.buy_shares: Optional[Union[int, float, Decimal]] = None
self.buy_limit_price: Optional[Union[int, float, Decimal]] = None
self.sell_fill_price: Optional[
Union[
int,
float,
np.floating,
Decimal,
PriceType,
Callable[[str, BarData], Union[int, float, Decimal]],
]
] = None
self.sell_shares: Optional[Union[int, float, Decimal]] = None
self.sell_limit_price: Optional[Union[int, float, Decimal]] = None
self.hold_bars: Optional[int] = None
self.score: Optional[float] = None
self.session = session
self.stop_loss: Optional[Union[int, float, Decimal]] = None
self.stop_loss_pct: Optional[Union[int, float, Decimal]] = None
self.stop_loss_limit: Optional[Union[int, float, Decimal]] = None
self.stop_loss_exit_price: Optional[PriceType] = None
self.stop_profit: Optional[Union[int, float, Decimal]] = None
self.stop_profit_pct: Optional[Union[int, float, Decimal]] = None
self.stop_profit_limit: Optional[Union[int, float, Decimal]] = None
self.stop_profit_exit_price: Optional[PriceType] = None
self.stop_trailing: Optional[Union[int, float, Decimal]] = None
self.stop_trailing_pct: Optional[Union[int, float, Decimal]] = None
self.stop_trailing_limit: Optional[Union[int, float, Decimal]] = None
self.stop_trailing_exit_price: Optional[PriceType] = None
self._cover: bool = False
self._exiting_pos: bool = False
def _verify_symbol(self):
if self.symbol is None:
raise ValueError("symbol is not set.")
@property
def bars(self) -> int:
"""Number of bars of data that have completed."""
return self._sym_end_index[self.symbol]
@property
def dt(self) -> datetime:
"""Current bar's date expressed as a ``datetime``."""
if self._curr_date is None:
raise ValueError("_curr_date is not set.")
if self._dt is None:
self._dt = to_datetime(self._curr_date)
return self._dt
@property
def date(self) -> NDArray[np.datetime64]:
"""Current bar's date expressed as a ``numpy.datetime64``."""
self._verify_symbol()
return self._col_scope.fetch( # type: ignore[return-value]
self.symbol, # type: ignore[arg-type]
DataCol.DATE.value,
self._sym_end_index[self.symbol],
)
@property
def open(self) -> NDArray[np.float64]:
"""Current bar's open price."""
self._verify_symbol()
return self._col_scope.fetch( # type: ignore[return-value]
self.symbol, # type: ignore[arg-type]
DataCol.OPEN.value,
self._sym_end_index[self.symbol],
)
@property
def high(self) -> NDArray[np.float64]:
"""Current bar's high price."""
self._verify_symbol()
return self._col_scope.fetch( # type: ignore[return-value]
self.symbol, # type: ignore[arg-type]
DataCol.HIGH.value,
self._sym_end_index[self.symbol],
)
@property
def low(self) -> NDArray[np.float64]:
"""Current bar's low price."""
self._verify_symbol()
return self._col_scope.fetch( # type: ignore[return-value]
self.symbol, # type: ignore[arg-type]
DataCol.LOW.value,
self._sym_end_index[self.symbol],
)
@property
def close(self) -> NDArray[np.float64]:
"""Current bar's close price."""
self._verify_symbol()
return self._col_scope.fetch( # type: ignore[return-value]
self.symbol, # type: ignore[arg-type]
DataCol.CLOSE.value,
self._sym_end_index[self.symbol],
)
@property
def volume(self) -> Optional[NDArray[np.float64]]:
"""Current bar's volume."""
self._verify_symbol()
return self._col_scope.fetch( # type: ignore[return-value]
self.symbol, # type: ignore[arg-type]
DataCol.VOLUME.value,
self._sym_end_index[self.symbol],
)
@property
def vwap(self) -> Optional[NDArray[np.float64]]:
"""Current bar's volume-weighted average price (VWAP)."""
self._verify_symbol()
return self._col_scope.fetch( # type: ignore[return-value]
self.symbol, # type: ignore[arg-type]
DataCol.VWAP.value,
self._sym_end_index[self.symbol],
)
@property
def cover_fill_price(
self,
) -> Optional[
Union[
int,
float,
np.floating,
Decimal,
PriceType,
Callable[[str, BarData], Union[int, float, Decimal]],
]
]:
"""Alias for :attr:`.buy_fill_price`. When set, this causes the buy
order to be placed before any sell orders.
"""
return self.buy_fill_price
@cover_fill_price.setter
def cover_fill_price(
self,
fill_price: Optional[
Union[
int,
float,
np.floating,
Decimal,
PriceType,
Callable[[str, BarData], Union[int, float, Decimal]],
]
],
):
self.buy_fill_price = fill_price
self._cover = True
@property
def cover_shares(self) -> Optional[Union[int, float, Decimal]]:
"""Alias for :attr:`.buy_shares`. When set, this causes the buy
order to be placed before any sell orders.
"""
return self.buy_shares
@cover_shares.setter
def cover_shares(self, shares: Optional[Union[int, float, Decimal]]):
self.buy_shares = shares
self._cover = True
@property
def cover_limit_price(self) -> Optional[Union[int, float, Decimal]]:
"""Alias for :attr:`.buy_limit_price`. When set, this causes the buy
order to be placed before any sell orders.
"""
return self.buy_limit_price
@cover_limit_price.setter
def cover_limit_price(
self, limit_price: Optional[Union[int, float, Decimal]]
):
self.buy_limit_price = limit_price
self._cover = True
[文档]
def sell_all_shares(self):
"""Sells all long shares of :attr:`.ExecContext.symbol`."""
pos = self.long_pos()
if pos is None:
return
self.sell_shares = pos.shares
self._portfolio.remove_stops(pos)
self._exiting_pos = True
[文档]
def cover_all_shares(self):
"""Covers all short shares of :attr:`.ExecContext.symbol`."""
pos = self.short_pos()
if pos is None:
return
self.cover_shares = pos.shares
self._portfolio.remove_stops(pos)
self._exiting_pos = True
[文档]
def foreign(
self, symbol: str, col: Optional[str] = None
) -> Union[BarData, Optional[NDArray]]:
"""Retrieves bar data for another ticker symbol.
Args:
symbol: Ticker symbol of the bar data.
col: Name of the data column to retrieve. If ``None``, all data
columns are returned in :class:`pybroker.common.BarData`.
Returns:
If ``col`` is ``None``, a :class:`pybroker.common.BarData`
instance containing data of all bars up to the current one.
Otherwise, an :class:`numpy.ndarray` containing values of the
column ``col``.
"""
if symbol in self._foreign:
return self._foreign[symbol]
if symbol not in self._sym_end_index:
raise ValueError(f"Symbol {symbol!r} not found.")
end_index = self._sym_end_index[symbol]
if col is None:
bar_data = self._col_scope.bar_data_from_data_columns(
symbol, end_index
)
self._foreign[symbol] = bar_data
return bar_data
else:
return self._col_scope.fetch(symbol, col, end_index)
[文档]
def model(self, name: str, symbol: Optional[str] = None) -> Any:
r"""Returns a trained model.
Args:
name: Name used to identify the model that was registered with
:meth:`pybroker.model.model`.
symbol: Ticker symbol of the data that was used to train the model.
If ``None``, the ``ExecContext``\ 's :attr:`.symbol` is used.
Returns:
Instance of the trained model.
"""
symbol = self._get_symbol(symbol)
return super().model(name, symbol)
[文档]
def indicator(
self, name: str, symbol: Optional[str] = None
) -> NDArray[np.float64]:
r"""Returns indicator data.
Args:
name: Name used to identify the indicator, registered with
:meth:`pybroker.indicator.indicator`.
symbol: Ticker symbol that was used to generate the indicator data.
If ``None``, the ``ExecContext``\ 's :attr:`.symbol` is used.
Returns:
:class:`numpy.ndarray` of indicator values for all bars up to the
current one, sorted in ascending chronological order.
"""
symbol = self._get_symbol(symbol)
return super().indicator(name, symbol)
[文档]
def input(
self, model_name: str, symbol: Optional[str] = None
) -> pd.DataFrame:
r"""Returns model input data for making predictions.
Args:
model_name: Name of the model for the input data.
symbol: Ticker symbol of the model for the input data. If ``None``,
the ``ExecContext``\ 's :attr:`.symbol` is used.
Returns:
:class:`pandas.DataFrame` containing the input data, where each row
represents a bar in the sequence up to the current bar. The rows
are sorted in ascending chronological order.
"""
symbol = self._get_symbol(symbol)
return super().input(model_name, symbol)
[文档]
def preds(self, model_name: str, symbol: Optional[str] = None) -> NDArray:
r"""Returns model predictions.
Args:
model_name: Name of the model that made the predictions.
symbol: Ticker symbol of the model that made the predictions. If
``None``, the ``ExecContext``\ 's :attr:`.symbol` is used.
Returns:
:class:`numpy.ndarray` containing the sequence of model predictions
up to the current bar. Sorted in ascending chronological order.
"""
symbol = self._get_symbol(symbol)
return super().preds(model_name, symbol)
[文档]
def long_pos(
self,
symbol: Optional[str] = None,
) -> Optional[Position]:
r"""Retrieves a current long :class:`pybroker.portfolio.Position` for a
``symbol``.
Args:
symbol: Ticker symbol of the position to return. If ``None``,
the ``ExecContext``\ 's :attr:`.symbol` is used. Defaults to
``None``.
Returns:
:class:`pybroker.portfolio.Position` if one exists, otherwise
``None``.
"""
symbol = self._get_symbol(symbol)
return super().pos(symbol, "long")
[文档]
def short_pos(
self,
symbol: Optional[str] = None,
) -> Optional[Position]:
r"""Retrieves a current short :class:`pybroker.portfolio.Position` for
a ``symbol``.
Args:
symbol: Ticker symbol of the position to return. If ``None``,
the ``ExecContext``\ 's :attr:`.symbol` is used. Defaults to
``None``.
Returns:
:class:`pybroker.portfolio.Position` if one exists, otherwise
``None``.
"""
symbol = self._get_symbol(symbol)
return super().pos(symbol, "short")
[文档]
def calc_target_shares(
self,
target_size: float,
price: Optional[float] = None,
cash: Optional[float] = None,
) -> Union[Decimal, int]:
r"""Calculates the number of shares given a ``target_size`` allocation
and share ``price``.
Args:
target_size: Proportion of cash used to calculate the number of
shares, where the max ``target_size`` is ``1``. For example, a
``target_size`` of ``0.1`` would represent 10% of cash.
price: Share price used to calculate the number of shares. If
``None``, the share price of the ``ExecContext``\ 's
:attr:`.symbol` is used.
cash: Cash used to calculate the number of number of shares. If
``None``, then the :class:`pybroker.portfolio.Portfolio` equity
is used to calculate the number of shares.
Returns:
Number of shares given ``target_size`` and share ``price``. If
:attr:`pybroker.config.StrategyConfig.enable_fractional_shares` is
``True``, then a Decimal is returned.
"""
price = self.close[-1] if price is None else price
return super().calc_target_shares(target_size, price, cash)
[文档]
def cancel_pending_order(self, order_id: int) -> bool:
"""Cancels a :class:`pybroker.scope.PendingOrder` with ``order_id``."""
return self._pending_order_scope.remove(order_id)
[文档]
def cancel_all_pending_orders(self, symbol: Optional[str] = None):
r"""Cancels all :class:`pybroker.scope.PendingOrder`\ s for ``symbol``.
When ``symbol`` is ``None``, all pending orders are canceled.
"""
self._pending_order_scope.remove_all(symbol)
[文档]
def cancel_stop(self, stop_id: int) -> bool:
"""Cancels a :class:`pybroker.portfolio.Stop` with ``stop_id``."""
return self._portfolio.remove_stop(stop_id)
[文档]
def cancel_stops(
self,
val: Union[str, Position, Entry],
stop_type: Optional[StopType] = None,
):
r"""Cancels :class:`pybroker.portfolio.Stop`\ s.
Args:
val: Ticker symbol, :class:`pybroker.portfolio.Position`, or
:class:`pybroker.portfolio.Entry` for which to cancel stops.
stop_type: :class:`pybroker.common.StopType`.
"""
self._portfolio.remove_stops(val, stop_type)
def _get_symbol(self, symbol: Optional[str] = None) -> str:
if symbol is not None:
return symbol
if self.symbol is None:
raise ValueError("symbol is not set.")
return self.symbol
def _create_stop(
self,
stop_type: StopType,
pos_type: Literal["long", "short"],
points: Optional[Union[int, float, Decimal]],
percent: Optional[Union[int, float, Decimal]],
bars: Optional[int],
fill_price: Optional[
Union[
int,
float,
np.floating,
Decimal,
PriceType,
Callable[[str, BarData], Union[int, float, Decimal]],
]
],
limit_price: Optional[Union[int, float, Decimal]],
exit_price: Optional[PriceType],
):
percent_dec, points_dec, limit_price_dec = None, None, None
if stop_type != StopType.BAR:
if percent is None and points is None:
raise ValueError("Percent or points must be set.")
if percent is not None:
percent_dec = to_decimal(percent)
elif points is not None:
points_dec = to_decimal(points)
if limit_price is not None:
limit_price_dec = to_decimal(limit_price)
if exit_price is not None and not isinstance(exit_price, PriceType):
raise ValueError("Stop exit price must be a PriceType.")
ExecContext._stop_id += 1
return Stop(
id=self._stop_id,
symbol=self._get_symbol(),
stop_type=stop_type,
pos_type=pos_type,
percent=percent_dec,
points=points_dec,
bars=bars,
fill_price=fill_price,
limit_price=limit_price_dec,
exit_price=exit_price,
)
def _get_stops(
self,
) -> tuple[Optional[frozenset[Stop]], Optional[frozenset[Stop]]]:
pos_type: Optional[Literal["long", "short"]] = None
if self.buy_shares is not None:
pos_type = "long"
elif self.sell_shares is not None:
pos_type = "short"
if pos_type is None:
return None, None
stops: deque[Stop] = deque()
if self.hold_bars is not None:
if self.hold_bars <= 0:
raise ValueError("hold_bars must be greater than 0.")
if pos_type == "long":
fill_price = (
self.sell_fill_price
if self.sell_fill_price is not None
else PriceType.MIDDLE
)
else:
fill_price = (
self.buy_fill_price
if self.buy_fill_price is not None
else PriceType.MIDDLE
)
stops.append(
self._create_stop(
stop_type=StopType.BAR,
points=None,
percent=None,
bars=self.hold_bars,
pos_type=pos_type,
fill_price=fill_price,
limit_price=None,
exit_price=None,
)
)
if self.stop_loss is not None and self.stop_loss_pct is not None:
raise ValueError(
"Only one of stop_loss or stop_loss_pct can be set."
)
if self.stop_loss is not None:
stops.append(
self._create_stop(
stop_type=StopType.LOSS,
points=self.stop_loss,
percent=None,
bars=None,
pos_type=pos_type,
fill_price=None,
limit_price=self.stop_loss_limit,
exit_price=self.stop_loss_exit_price,
)
)
elif self.stop_loss_pct is not None:
stops.append(
self._create_stop(
stop_type=StopType.LOSS,
points=None,
percent=self.stop_loss_pct,
bars=None,
pos_type=pos_type,
fill_price=None,
limit_price=self.stop_loss_limit,
exit_price=self.stop_loss_exit_price,
)
)
if self.stop_profit is not None and self.stop_profit_pct is not None:
raise ValueError(
"Only one of stop_profit or stop_profit_pct can be set."
)
if self.stop_profit is not None:
stops.append(
self._create_stop(
stop_type=StopType.PROFIT,
points=self.stop_profit,
percent=None,
bars=None,
pos_type=pos_type,
fill_price=None,
limit_price=self.stop_profit_limit,
exit_price=self.stop_profit_exit_price,
)
)
elif self.stop_profit_pct is not None:
stops.append(
self._create_stop(
stop_type=StopType.PROFIT,
points=None,
percent=self.stop_profit_pct,
bars=None,
pos_type=pos_type,
fill_price=None,
limit_price=self.stop_profit_limit,
exit_price=self.stop_profit_exit_price,
)
)
if (
self.stop_trailing is not None
and self.stop_trailing_pct is not None
):
raise ValueError(
"Only one of stop_trailing or stop_trailing_pct can be set."
)
if self.stop_trailing is not None:
stops.append(
self._create_stop(
stop_type=StopType.TRAILING,
points=self.stop_trailing,
percent=None,
bars=None,
pos_type=pos_type,
fill_price=None,
limit_price=self.stop_trailing_limit,
exit_price=self.stop_trailing_exit_price,
)
)
elif self.stop_trailing_pct is not None:
stops.append(
self._create_stop(
stop_type=StopType.TRAILING,
points=None,
percent=self.stop_trailing_pct,
bars=None,
pos_type=pos_type,
fill_price=None,
limit_price=self.stop_trailing_limit,
exit_price=self.stop_trailing_exit_price,
)
)
if (
self.stop_loss_limit is not None
and self.stop_loss is None
and self.stop_loss_pct is None
):
raise ValueError(
"Either stop_loss or stop_loss_pct must be set when "
"stop_loss_limit is set."
)
if (
self.stop_loss_exit_price is not None
and self.stop_loss is None
and self.stop_loss_pct is None
):
raise ValueError(
"Either stop_loss or stop_loss_pct must be set when "
"stop_loss_exit_price is set."
)
if (
self.stop_profit_limit is not None
and self.stop_profit is None
and self.stop_profit_pct is None
):
raise ValueError(
"Either stop_profit or stop_profit_pct must be set when "
"stop_profit_limit is set."
)
if (
self.stop_profit_exit_price is not None
and self.stop_profit is None
and self.stop_profit_pct is None
):
raise ValueError(
"Either stop_profit or stop_profit_pct must be set when "
"stop_profit_exit_price is set."
)
if (
self.stop_trailing_limit is not None
and self.stop_trailing is None
and self.stop_trailing_pct is None
):
raise ValueError(
"Either stop_trailing or stop_trailing_pct must be set when "
"stop_trailing_limit is set."
)
if (
self.stop_trailing_exit_price is not None
and self.stop_trailing is None
and self.stop_trailing_pct is None
):
raise ValueError(
"Either stop_trailing or stop_trailing_pct must be set when "
"stop_trailing_exit_price is set."
)
if pos_type == "long":
return frozenset(stops), None
else:
return None, frozenset(stops)
[文档]
def to_result(self) -> Optional[ExecResult]:
"""Creates an :class:`.ExecResult` from the data set on
:class:`.ExecContext`.
"""
if self._curr_date is None:
raise ValueError("curr_date is not set.")
if self.symbol is None:
raise ValueError("symbol is not set.")
if self.buy_shares is None:
if self.buy_limit_price is not None:
raise ValueError(
"buy_shares must be set when buy_limit_price is set."
)
if self.buy_fill_price is not None and self.hold_bars is None:
raise ValueError(
"buy_shares or hold_bars must be set when "
"buy_fill_price is set."
)
if self.sell_shares is None:
if self.sell_limit_price is not None:
raise ValueError(
"sell_shares must be set when sell_limit_price is set."
)
if self.sell_fill_price is not None and self.hold_bars is None:
raise ValueError(
"sell_shares or hold_bars must be set when "
"sell_fill_price is set."
)
if self.buy_shares is None and self.sell_shares is None:
if (
self.stop_loss is not None
or self.stop_loss_pct is not None
or self.stop_loss_limit is not None
or self.stop_profit is not None
or self.stop_profit_pct is not None
or self.stop_profit_limit is not None
or self.stop_trailing is not None
or self.stop_trailing_pct is not None
or self.stop_trailing_limit is not None
):
raise ValueError(
"Either buy_shares or sell_shares must be set when a stop "
"is set."
)
if self.hold_bars is not None:
raise ValueError(
"Either buy_shares or sell_shares must be set when "
"hold_bars is set."
)
if self.buy_shares is not None and self.sell_shares is not None:
raise ValueError(
"For each symbol, only one of buy_shares or sell_shares can be"
" set per bar."
)
if not self.buy_shares and not self.sell_shares:
return None
buy_fill_price = (
self.buy_fill_price
if self.buy_fill_price is not None
else PriceType.MIDDLE
)
sell_fill_price = (
self.sell_fill_price
if self.sell_fill_price is not None
else PriceType.MIDDLE
)
buy_shares = (
to_decimal(self.buy_shares)
if self.buy_shares is not None
else None
)
buy_limit_price = (
to_decimal(self.buy_limit_price)
if self.buy_limit_price is not None
else None
)
sell_limit_price = (
to_decimal(self.sell_limit_price)
if self.sell_limit_price is not None
else None
)
sell_shares = (
to_decimal(self.sell_shares)
if self.sell_shares is not None
else None
)
long_stops, short_stops = self._get_stops()
return ExecResult(
symbol=self.symbol,
date=self._curr_date,
buy_fill_price=buy_fill_price,
sell_fill_price=sell_fill_price,
score=self.score,
hold_bars=self.hold_bars,
buy_shares=buy_shares,
buy_limit_price=buy_limit_price,
sell_shares=sell_shares,
sell_limit_price=sell_limit_price,
long_stops=long_stops,
short_stops=short_stops,
cover=self._cover,
)
def __getattr__(self, attr):
if attr in self._scope.custom_data_cols:
if self.symbol is None:
raise ValueError("symbol is not set.")
return self._col_scope.fetch(
self.symbol, attr, self._sym_end_index[self.symbol]
)
raise AttributeError(f"Attribute {attr!r} not found.")
[文档]
def set_exec_ctx_data(ctx: ExecContext, date: np.datetime64):
"""Sets data on an :class:`.ExecContext` instance.
Args:
ctx: :class:`.ExecContext`.
date: Current bar's date.
"""
ctx._curr_date = date
ctx._dt = None
ctx._foreign.clear()
ctx._cover = False
ctx._exiting_pos = False
ctx.buy_fill_price = None
ctx.buy_shares = None
ctx.buy_limit_price = None
ctx.sell_fill_price = None
ctx.sell_shares = None
ctx.sell_limit_price = None
ctx.hold_bars = None
ctx.score = None
ctx.stop_loss = None
ctx.stop_loss_pct = None
ctx.stop_loss_limit = None
ctx.stop_profit = None
ctx.stop_profit_pct = None
ctx.stop_profit_limit = None
ctx.stop_trailing = None
ctx.stop_trailing_pct = None
ctx.stop_trailing_limit = None